29 research outputs found

    NP-Hardness of Coloring 2-Colorable Hypergraph with Poly-Logarithmically Many Colors

    Get PDF

    Simultaneous Max-Cut Is Harder to Approximate Than Max-Cut

    Get PDF
    A systematic study of simultaneous optimization of constraint satisfaction problems was initiated by Bhangale et al. [ICALP, 2015]. The simplest such problem is the simultaneous Max-Cut. Bhangale et al. [SODA, 2018] gave a .878-minimum approximation algorithm for simultaneous Max-Cut which is almost optimal assuming the Unique Games Conjecture (UGC). For single instance Max-Cut, Goemans-Williamson [JACM, 1995] gave an ?_GW-approximation algorithm where ?_GW ? .87856720... which is optimal assuming the UGC. It was left open whether one can achieve an ?_GW-minimum approximation algorithm for simultaneous Max-Cut. We answer the question by showing that there exists an absolute constant ?? ? 10^{-5} such that it is NP-hard to get an (?_GW- ??)-minimum approximation for simultaneous Max-Cut assuming the Unique Games Conjecture

    Max-3-Lin over Non-Abelian Groups with Universal Factor Graphs

    Get PDF
    Factor graph of an instance of a constraint satisfaction problem with n variables and m constraints is the bipartite graph between [m] and [n] describing which variable appears in which constraints. Thus, an instance of a CSP is completely defined by its factor graph and the list of predicates. We show inapproximability of Max-3-LIN over non-abelian groups (both in the perfect completeness case and in the imperfect completeness case), with the same inapproximability factor as in the general case, even when the factor graph is fixed. Along the way, we also show that these optimal hardness results hold even when we restrict the linear equations in the Max-3-LIN instances to the form x? y? z = g, where x,y,z are the variables and g is a group element. We use representation theory and Fourier analysis over non-abelian groups to analyze the reductions

    UG-Hardness to NP-Hardness by Losing Half

    Get PDF
    The 2-to-2 Games Theorem of [Subhash Khot et al., 2017; Dinur et al., 2018; Dinur et al., 2018; Dinur et al., 2018] implies that it is NP-hard to distinguish between Unique Games instances with assignment satisfying at least (1/2-epsilon) fraction of the constraints vs. no assignment satisfying more than epsilon fraction of the constraints, for every constant epsilon>0. We show that the reduction can be transformed in a non-trivial way to give a stronger guarantee in the completeness case: For at least (1/2-epsilon) fraction of the vertices on one side, all the constraints associated with them in the Unique Games instance can be satisfied. We use this guarantee to convert the known UG-hardness results to NP-hardness. We show: 1) Tight inapproximability of approximating independent sets in degree d graphs within a factor of Omega(d/(log^2 d)), where d is a constant. 2) NP-hardness of approximate the Maximum Acyclic Subgraph problem within a factor of 2/3+epsilon, improving the previous ratio of 14/15+epsilon by Austrin et al. [Austrin et al., 2015]. 3) For any predicate P^{-1}(1) subseteq [q]^k supporting a balanced pairwise independent distribution, given a P-CSP instance with value at least 1/2-epsilon, it is NP-hard to satisfy more than (|P^{-1}(1)|/(q^k))+epsilon fraction of constraints

    On Fortification of Projection Games

    Get PDF
    A recent result of Moshkovitz \cite{Moshkovitz14} presented an ingenious method to provide a completely elementary proof of the Parallel Repetition Theorem for certain projection games via a construction called fortification. However, the construction used in \cite{Moshkovitz14} to fortify arbitrary label cover instances using an arbitrary extractor is insufficient to prove parallel repetition. In this paper, we provide a fix by using a stronger graph that we call fortifiers. Fortifiers are graphs that have both â„“1\ell_1 and â„“2\ell_2 guarantees on induced distributions from large subsets. We then show that an expander with sufficient spectral gap, or a bi-regular extractor with stronger parameters (the latter is also the construction used in an independent update \cite{Moshkovitz15} of \cite{Moshkovitz14} with an alternate argument), is a good fortifier. We also show that using a fortifier (in particular â„“2\ell_2 guarantees) is necessary for obtaining the robustness required for fortification.Comment: 19 page
    corecore